Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Front Immunol ; 14: 1143870, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37006290

RESUMO

Background: Herpes simplex viruses (HSV) cause ubiquitous human infections. For vaccine development, knowledge concerning correlates of protection is essential. Therefore, we investigated (I) if humans are in principle capable producing cell-to-cell spread inhibiting antibodies against HSV and (II) whether this capacity is associated with a reduced HSV-1 reactivation risk. Methods: We established a high-throughput HSV-1-ΔgE-GFP reporter virus-based assay and evaluated 2,496 human plasma samples for HSV-1 glycoprotein E (gE) independent cell-to-cell spread inhibiting antibodies. Subsequently, we conducted a retrospective survey among the blood donors to analyze the correlation between the presence of cell-to-cell spread inhibiting antibodies in plasma and the frequency of HSV reactivations. Results: In total, 128 of the 2,496 blood donors (5.1%) exhibited high levels of HSV-1 gE independent cell-to-cell spread inhibiting antibodies in the plasma. None of the 147 HSV-1 seronegative plasmas exhibited partial or complete cell-to-cell spread inhibition, demonstrating the specificity of our assay. Individuals with cell-to-cell spread inhibiting antibodies showed a significantly lower frequency of HSV reactivations compared to subjects without sufficient levels of such antibodies. Conclusion: This study contains two important findings: (I) upon natural HSV infection, some humans produce cell-to-cell spread inhibiting antibodies and (II) such antibodies correlate with protection against recurrent HSV-1. Moreover, these elite neutralizers may provide promising material for immunoglobulin therapy and information for the design of a protective vaccine against HSV-1.


Assuntos
Herpes Simples , Herpesvirus Humano 1 , Humanos , Estudos Retrospectivos , Proteínas do Envelope Viral , Imunização Passiva , Anticorpos Bloqueadores
2.
Bone Marrow Transplant ; 57(5): 712-720, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35177828

RESUMO

Human cytomegalovirus (HCMV) reactivation remains a relevant complication after hematopoietic stem cell transplantation (HSCT) despite the great progress made in prophylaxis and treatment. Adaptive Natural Killer (NK) cells undergo a persistent reconfiguration in response to HCMV reactivation however, the exact role of adaptive NK cells in HCMV surveillance is currently unknown. We studied the relationship between HCMV reactivation and adaptive NK cells in 70 patients monitored weekly until day +100 after HSCT. Absolute cell counts of adaptive NK cells increased significantly after resolution of HCMV-reactivation compared to patients without reactivation. Patients with HCMV-reactivation had an early reconstitution of adaptive NK cells ("Responders") and had mainly a single reactivation (75% Responders vs 48% Non-Responders). Adaptive NK cells eliminated HCMV-infected human foreskin fibroblasts (HFF) in vitro and recruited T cells in an in vitro transwell migration assay. An extensive cytokine/chemokine panel demonstrated strongly increased secretion of CXCL10/IP-10, IFN-α, IL-1α, IL-1ß, IL-5, IL-7 and CCL4. Thus, adaptive NK cells may control viral spread and T cell expansion and survival during HCMV-reactivation. Taken together, we have demonstrated the potential of adaptive NK cells in the control of HCMV reactivation both by direct cytotoxicity and by recruitment of other immune cells.


Assuntos
Infecções por Citomegalovirus , Transplante de Células-Tronco Hematopoéticas , Citomegalovirus , Humanos , Células Matadoras Naturais , Linfócitos T
3.
Cell Rep ; 29(11): 3460-3471.e7, 2019 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-31825829

RESUMO

Microglia express Toll-like receptors (TLRs) that sense pathogen- and host-derived factors, including single-stranded RNA. In the brain, let-7 microRNA (miRNA) family members are abundantly expressed, and some have recently been shown to serve as TLR7 ligands. We investigated whether let-7 miRNA family members differentially control microglia biology in health and disease. We found that a subset of let-7 miRNA family members function as signaling molecules to induce microglial release of inflammatory cytokines, modulate antigen presentation, and attenuate cell migration in a TLR7-dependent manner. The capability of the let-7 miRNAs to control microglial function is sequence specific, mapping to a let-7 UUGU motif. In human and murine glioblastoma/glioma, let-7 miRNAs are differentially expressed and reduce murine GL261 glioma growth in the same sequence-specific fashion through microglial TLR7. Taken together, these data establish let-7 miRNAs as key TLR7 signaling activators that serve to regulate the diverse functions of microglia in health and glioma.


Assuntos
Neoplasias Encefálicas/genética , Glioma/genética , MicroRNAs/metabolismo , Microglia/metabolismo , Receptor 7 Toll-Like/genética , Animais , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Células Cultivadas , Feminino , Regulação Neoplásica da Expressão Gênica , Glioma/metabolismo , Glioma/patologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Transdução de Sinais , Receptor 7 Toll-Like/metabolismo
4.
Cell Rep ; 24(10): 2773-2783.e6, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30184509

RESUMO

Sex differences in brain structure and function are of substantial scientific interest because of sex-related susceptibility to psychiatric and neurological disorders. Neuroinflammation is a common denominator of many of these diseases, and thus microglia, as the brain's immunocompetent cells, have come into focus in sex-specific studies. Here, we show differences in the structure, function, and transcriptomic and proteomic profiles in microglia freshly isolated from male and female mouse brains. We show that male microglia are more frequent in specific brain areas, have a higher antigen-presenting capacity, and appear to have a higher potential to respond to stimuli such as ATP, reflected in higher baseline outward and inward currents and higher protein expression of purinergic receptors. Altogether, we provide a comprehensive resource to generate and validate hypotheses regarding brain sex differences.


Assuntos
Encéfalo/metabolismo , Microglia/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Feminino , Masculino , Camundongos , Proteômica/métodos , Caracteres Sexuais , Transcriptoma/genética
5.
Acta Neuropathol ; 135(4): 551-568, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29249001

RESUMO

After stroke, macrophages in the ischemic brain may be derived from either resident microglia or infiltrating monocytes. Using bone marrow (BM)-chimerism and dual-reporter transgenic fate mapping, we here set out to delimit the responses of either cell type to mild brain ischemia in a mouse model of 30 min transient middle cerebral artery occlusion (MCAo). A discriminatory analysis of gene expression at 7 days post-event yielded 472 transcripts predominantly or exclusively expressed in blood-derived macrophages as well as 970 transcripts for microglia. The differentially regulated genes were further collated with oligodendrocyte, astrocyte, and neuron transcriptomes, resulting in a dataset of microglia- and monocyte-specific genes in the ischemic brain. Functional categories significantly enriched in monocytes included migration, proliferation, and calcium signaling, indicative of strong activation. Whole-cell patch-clamp analysis further confirmed this highly activated state by demonstrating delayed outward K+ currents selectively in invading cells. Although both cell types displayed a mixture of known phenotypes pointing to the significance of 'intermediate states' in vivo, blood-derived macrophages were generally more skewed toward an M2 neuroprotective phenotype. Finally, we found that decreased engraftment of blood-borne cells in the ischemic brain of chimeras reconstituted with BM from Selplg-/- mice resulted in increased lesions at 7 days and worse post-stroke sensorimotor performance. In aggregate, our study establishes crucial differences in activation state between resident microglia and invading macrophages after stroke and identifies unique genomic signatures for either cell type.


Assuntos
Isquemia Encefálica/metabolismo , Macrófagos/metabolismo , Microglia/metabolismo , Acidente Vascular Cerebral/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Isquemia Encefálica/patologia , Cátions Monovalentes/metabolismo , Modelos Animais de Doenças , Expressão Gênica , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Macrófagos/patologia , Masculino , Glicoproteínas de Membrana/deficiência , Glicoproteínas de Membrana/genética , Potenciais da Membrana/fisiologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/patologia , Potássio/metabolismo , Acidente Vascular Cerebral/patologia , Quimeras de Transplante
6.
Exp Eye Res ; 166: 56-69, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29042140

RESUMO

Anti-VEGF-directed therapies have been a milestone for treating retinal vascular diseases. Depletion of monocyte lineage cells suppresses pathological neovascularization in the oxygen-induced retinopathy mouse model. However, the question whether myeloid-derived VEGF-A expression is responsible for the pathogenesis in oxygen-induced retinopathy remained unknown. We analyzed LysMCre-driven myeloid cell-specific VEGF-A knockout mice as well as mice with complete depletion of circulating macrophages through clodronate-liposome treatment in the oxygen-induced retinopathy model by immunohistochemistry, qPCR, and flow cytometry. Furthermore, we analyzed VEGF-A mRNA expression in MIO-M1 cells alone and in co-culture with BV-2 cells in vitro. The myeloid cell-specific VEGF-A knockout did not change relative retinal VEGF-A mRNA levels, the relative avascular area or macrophage/granulocyte numbers in oxygen-induced retinopathy and under normoxic conditions. We observed an insignificantly attenuated pathology in systemically clodronate-liposome treated knockouts but evident VEGF-A expression in activated Müller cells on immunohistochemically stained sections. MIO-M1 cells had significantly higher expression levels of VEGF-A in co-culture with BV-2 cells compared to cultivating MIO-M1 cells alone. Our data show that myeloid-derived cells contribute to pathological neovascularization in oxygen-induced retinopathy through activation of VEGF-A expression in Müller cells.


Assuntos
Células Ependimogliais/metabolismo , Hipóxia/metabolismo , Células Mieloides/metabolismo , Neovascularização Retiniana/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Células Cultivadas , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Knockout , RNA Mensageiro/metabolismo
7.
Cancer Res ; 77(9): 2266-2278, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28235764

RESUMO

In glioblastoma (GBM), tumor-associated macrophages (TAM) represent up to one half of the cells of the tumor mass, including both infiltrating macrophages and resident brain microglia. In an effort to delineate the temporal and spatial dynamics of TAM composition during gliomagenesis, we used genetically engineered and GL261-induced mouse models in combination with CX3CR1GFP/WT;CCR2RFP/WT double knock-in mice. Using this approach, we demonstrated that CX3CR1LoCCR2Hi monocytes were recruited to the GBM, where they transitioned to CX3CR1HiCCR2Lo macrophages and CX3CR1HiCCR2- microglia-like cells. Infiltrating macrophages/monocytes constituted approximately 85% of the total TAM population, with resident microglia accounting for the approximately 15% remaining. Bone marrow-derived infiltrating macrophages/monocytes were recruited to the tumor early during GBM initiation, where they localized preferentially to perivascular areas. In contrast, resident microglia were localized mainly to peritumoral regions. RNA-sequencing analyses revealed differential gene expression patterns unique to infiltrating and resident cells, suggesting unique functions for each TAM population. Notably, limiting monocyte infiltration via genetic Ccl2 reduction prolonged the survival of tumor-bearing mice. Our findings illuminate the unique composition and functions of infiltrating and resident myeloid cells in GBM, establishing a rationale to target infiltrating cells in this neoplasm. Cancer Res; 77(9); 2266-78. ©2017 AACR.


Assuntos
Glioblastoma/genética , Macrófagos/patologia , Receptores CCR2/genética , Receptores de Quimiocinas/genética , Animais , Receptor 1 de Quimiocina CX3C , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica , Glioblastoma/patologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Camundongos , Camundongos Transgênicos , Microglia/patologia , Monócitos/patologia , Receptores CCR2/biossíntese , Receptores de Quimiocinas/biossíntese
8.
Mol Cancer Ther ; 15(8): 1975-87, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27256374

RESUMO

Glioma regression requires the recruitment of potent antitumor immune cells into the tumor microenvironment. Dendritic cells (DC) play a role in immune responses to these tumors. The fact that DC vaccines do not effectively combat high-grade gliomas, however, suggests that DCs need to be genetically modified specifically to promote their migration to tumor relevant sites. Previously, we identified extracellular signal-regulated kinase (ERK1) as a regulator of DC immunogenicity and brain autoimmunity. In the current study, we made use of modern magnetic resonance methods to study the role of ERK1 in regulating DC migration and tumor progression in a model of high-grade glioma. We found that ERK1-deficient mice are more resistant to the development of gliomas, and tumor growth in these mice is accompanied by a higher infiltration of leukocytes. ERK1-deficient DCs exhibit an increase in migration that is associated with sustained Cdc42 activation and increased expression of actin-associated cytoskeleton-organizing proteins. We also demonstrated that ERK1 deletion potentiates DC vaccination and provides a survival advantage in high-grade gliomas. Considering the therapeutic significance of these results, we propose ERK1-deleted DC vaccines as an additional means of eradicating resilient tumor cells and preventing tumor recurrence. Mol Cancer Ther; 15(8); 1975-87. ©2016 AACR.


Assuntos
Vacinas Anticâncer/imunologia , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Glioma/imunologia , Glioma/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Animais , Biomarcadores , Linhagem Celular Tumoral , Movimento Celular/genética , Movimento Celular/imunologia , Modelos Animais de Doenças , Glioma/diagnóstico , Glioma/terapia , Humanos , Estimativa de Kaplan-Meier , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Imageamento por Ressonância Magnética , Camundongos , Camundongos Knockout , Proteína Quinase 3 Ativada por Mitógeno/genética , Gradação de Tumores , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/metabolismo
9.
Glia ; 64(8): 1416-36, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27312099

RESUMO

Glioblastoma (GBM) is the most aggressive brain tumor in adults. It is strongly infiltrated by microglia and peripheral monocytes that support tumor growth. In the present study we used RNA sequencing to compare the expression profile of CD11b(+) human glioblastoma-associated microglia/monocytes (hGAMs) to CD11b(+) microglia isolated from non-tumor samples. Hierarchical clustering and principal component analysis showed a clear separation of the two sample groups and we identified 334 significantly regulated genes in hGAMs. In comparison to human control microglia hGAMs upregulated genes associated with mitotic cell cycle, cell migration, cell adhesion, and extracellular matrix organization. We validated the expression of several genes associated with extracellular matrix organization in samples of human control microglia, hGAMs, and the hGAMs-depleted fraction via qPCR. The comparison to murine GAMs (mGAMs) showed that both cell populations share a significant fraction of upregulated transcripts compared with their respective controls. These genes were mostly related to mitotic cell cycle. However, in contrast to murine cells, human GAMs did not upregulate genes associated to immune activation. Comparison of human and murine GAMs expression data to several data sets of in vitro-activated human macrophages and murine microglia showed that, in contrast to mGAMs, hGAMs share a smaller overlap to these data sets in general and in particular to cells activated by proinflammatory stimulation with LPS + INFγ or TNFα. Our findings provide new insights into the biology of human glioblastoma-associated microglia/monocytes and give detailed information about the validity of murine experimental models. GLIA 2016 GLIA 2016;64:1416-1436.


Assuntos
Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Microglia/metabolismo , Monócitos/metabolismo , Animais , Antígeno CD11b/metabolismo , Biologia Computacional , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de RNA , Transcriptoma
10.
Cell Rep ; 15(9): 1945-56, 2016 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-27210745

RESUMO

Antibiotics, though remarkably useful, can also cause certain adverse effects. We detected that treatment of adult mice with antibiotics decreases hippocampal neurogenesis and memory retention. Reconstitution with normal gut flora (SPF) did not completely reverse the deficits in neurogenesis unless the mice also had access to a running wheel or received probiotics. In parallel to an increase in neurogenesis and memory retention, both SPF-reconstituted mice that ran and mice supplemented with probiotics exhibited higher numbers of Ly6C(hi) monocytes in the brain than antibiotic-treated mice. Elimination of Ly6C(hi) monocytes by antibody depletion or the use of knockout mice resulted in decreased neurogenesis, whereas adoptive transfer of Ly6C(hi) monocytes rescued neurogenesis after antibiotic treatment. We propose that the rescue of neurogenesis and behavior deficits in antibiotic-treated mice by exercise and probiotics is partially mediated by Ly6C(hi) monocytes.


Assuntos
Envelhecimento/fisiologia , Antibacterianos/farmacologia , Antígenos Ly/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Hipocampo/fisiologia , Monócitos/metabolismo , Neurogênese/efeitos dos fármacos , Transferência Adotiva , Animais , Antibiose/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/fisiologia , Contagem de Células , Células Cultivadas , Técnicas de Cocultura , Transplante de Microbiota Fecal , Trato Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/fisiologia , Hipocampo/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células-Tronco Neurais/citologia , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Condicionamento Físico Animal , Probióticos/farmacologia , Esferoides Celulares/citologia , Esferoides Celulares/efeitos dos fármacos
11.
J Neuropathol Exp Neurol ; 75(5): 429-40, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27030742

RESUMO

Peripheral macrophages and resident microglia constitute the dominant glioma-infiltrating cells. The tumor induces an immunosuppressive and tumor-supportive phenotype in these glioma-associated microglia/brain macrophages (GAMs). A subpopulation of glioma cells acts as glioma stem cells (GSCs). We explored the interaction between GSCs and GAMs. Using CD133 as a marker of stemness, we enriched for or deprived the mouse glioma cell line GL261 of GSCs by fluorescence-activated cell sorting (FACS). Over the same period of time, 100 CD133(+ )GSCs had the capacity to form a tumor of comparable size to the ones formed by 10,000 CD133(-) GL261 cells. In IL-6(-/-) mice, only tumors formed by CD133(+ )cells were smaller compared with wild type. After stimulation of primary cultured microglia with medium from CD133-enriched GL261 glioma cells, we observed an selective upregulation in microglial IL-6 secretion dependent on Toll-like receptor (TLR) 4. Our results show that GSCs, but not the bulk glioma cells, initiate microglial IL-6 secretion via TLR4 signaling and that IL-6 regulates glioma growth by supporting GSCs. Using human glioma tissue, we could confirm the finding that GAMs are the major source of IL-6 in the tumor context.


Assuntos
Neoplasias Encefálicas/metabolismo , Glioma/metabolismo , Interleucina-6/metabolismo , Macrófagos/metabolismo , Microglia/metabolismo , Células-Tronco Neoplásicas/metabolismo , Receptor 4 Toll-Like/biossíntese , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Galinhas , Glioma/patologia , Humanos , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/patologia , Células-Tronco Neoplásicas/patologia , Transdução de Sinais/fisiologia , Células Tumorais Cultivadas , Regulação para Cima/fisiologia
12.
Brain Struct Funct ; 221(2): 1157-72, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25523105

RESUMO

Microglia undergo a process of activation in pathology which is controlled by many factors including neurotransmitters. We found that a subpopulation (11 %) of freshly isolated adult microglia respond to the muscarinic acetylcholine receptor agonist carbachol with a Ca(2+) increase and a subpopulation of similar size (16 %) was observed by FACS analysis using an antibody against the M3 receptor subtype. The carbachol-sensitive population increased in microglia/brain macrophages isolated from tissue of mouse models for stroke (60 %) and Alzheimer's disease (25 %), but not for glioma and multiple sclerosis. Microglia cultured from adult and neonatal brain contained a carbachol-sensitive subpopulation (8 and 9 %), which was increased by treatment with interferon-γ to around 60 %. This increase was sensitive to blockers of protein synthesis and correlated with an upregulation of the M3 receptor subtype and with an increased expression of MHC-I and MHC-II. Carbachol was a chemoattractant for microglia and decreased their phagocytic activity.


Assuntos
Doença de Alzheimer/metabolismo , Microglia/metabolismo , Receptores Muscarínicos/biossíntese , Acidente Vascular Cerebral/metabolismo , Animais , Encéfalo/metabolismo , Carbacol/farmacologia , Modelos Animais de Doenças , Feminino , Glioma/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos , Modelos Animais , Esclerose Múltipla/metabolismo , Agonistas Muscarínicos/farmacologia , Neurotransmissores/metabolismo , Receptor Muscarínico M2/metabolismo , Receptor Muscarínico M3/metabolismo
13.
Circulation ; 131(20): 1772-82, 2015 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-25794850

RESUMO

BACKGROUND: Poststroke angiogenesis contributes to long-term recovery after stroke. Signal transducer and activator of transcription-3 (Stat3) is a key regulator for various inflammatory signals and angiogenesis. It was the aim of this study to determine its function in poststroke outcome. METHODS AND RESULTS: We generated a tamoxifen-inducible and endothelial-specific Stat3 knockout mouse model by crossbreeding Stat3(floxed/KO) and Tie2-Cre(ERT2) mice. Cerebral ischemia was induced by 30 minutes of middle cerebral artery occlusion. We demonstrated that endothelial Stat3 ablation did not alter lesion size 2 days after ischemia but did worsen functional outcome at 14 days and increase lesion size at 28 days. At this late time point vascular Stat3 expression and phosphorylation were still increased in wild-type mice. Gene array analysis of a CD31-enriched cell population of the neurovascular niche showed that endothelial Stat3 ablation led to a shift toward an antiangiogenic and axon growth-inhibiting micromilieu after stroke, with an increased expression of Adamts9. Remodeling and glycosylation of the extracellular matrix and microglia proliferation were increased, whereas angiogenesis was reduced. CONCLUSIONS: Endothelial Stat3 regulates angiogenesis, axon growth, and extracellular matrix remodeling and is essential for long-term recovery after stroke. It might serve as a potent target for stroke treatment after the acute phase by fostering angiogenesis and neuroregeneration.


Assuntos
Endotélio Vascular/metabolismo , Infarto da Artéria Cerebral Média/fisiopatologia , Neovascularização Fisiológica/fisiologia , Plasticidade Neuronal/fisiologia , Fator de Transcrição STAT3/fisiologia , Proteínas ADAM/biossíntese , Proteínas ADAM/genética , Proteína ADAMTS9 , Animais , Axônios/fisiologia , Encéfalo/patologia , Microambiente Celular , Circulação Cerebrovascular , Convalescença , Proteínas da Matriz Extracelular/metabolismo , Perfilação da Expressão Gênica , Infarto da Artéria Cerebral Média/patologia , Camundongos , Camundongos Knockout , Microglia/patologia , Análise de Sequência com Séries de Oligonucleotídeos , Fosforilação , Processamento de Proteína Pós-Traducional , Recuperação de Função Fisiológica , Fator de Transcrição STAT3/deficiência , Fator de Transcrição STAT3/genética , Transdução de Sinais/fisiologia
14.
PLoS One ; 10(2): e0116644, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25658639

RESUMO

Malignant glioma belong to the most aggressive neoplasms in humans with no successful treatment available. Patients suffering from glioblastoma multiforme (GBM), the highest-grade glioma, have an average survival time of only around one year after diagnosis. Both microglia and peripheral macrophages/monocytes accumulate within and around glioma, but fail to exert effective anti-tumor activity and even support tumor growth. Here we use microarray analysis to compare the expression profiles of glioma-associated microglia/macrophages and naive control cells. Samples were generated from CD11b+ MACS-isolated cells from naïve and GL261-implanted C57BL/6 mouse brains. Around 1000 genes were more than 2-fold up- or downregulated in glioma-associated microglia/macrophages when compared to control cells. A comparison with published data sets of M1, M2a,b,c-polarized macrophages revealed a gene expression pattern that has only partial overlap with any of the M1 or M2 gene expression patterns. Samples for the qRT-PCR validation of selected M1 and M2a,b,c-specific genes were generated from two different glioma mouse models and isolated by flow cytometry to distinguish between resident microglia and invading macrophages. We confirmed in both models the unique glioma-associated microglia/macrophage phenotype including a mixture of M1 and M2a,b,c-specific genes. To validate the expression of these genes in human we MACS-isolated CD11b+ microglia/macrophages from GBM, lower grade brain tumors and control specimens. Apart from the M1/M2 gene analysis, we demonstrate that the expression of Gpnmb and Spp1 is highly upregulated in both murine and human glioma-associated microglia/macrophages. High expression of these genes has been associated with poor prognosis in human GBM, as indicated by patient survival data linked to gene expression data. We also show that microglia/macrophages are the predominant source of these transcripts in murine and human GBM. Our findings provide new potential targets for future anti-glioma therapy.


Assuntos
Neoplasias Encefálicas/patologia , Glioblastoma/patologia , Macrófagos/fisiologia , Glicoproteínas de Membrana/genética , Microglia/fisiologia , Osteopontina/genética , Animais , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Células Cultivadas , Regulação Neoplásica da Expressão Gênica , Glioblastoma/metabolismo , Humanos , Macrófagos/citologia , Glicoproteínas de Membrana/metabolismo , Camundongos , Microglia/citologia , Transplante de Neoplasias , Osteopontina/metabolismo , Prognóstico
15.
Neuro Oncol ; 17(2): 200-10, 2015 02.
Artigo em Inglês | MEDLINE | ID: mdl-25452390

RESUMO

BACKGROUND: Accumulation and infiltration of microglia/brain macrophages around and into glioma tissue promote tumor invasion and expansion. One tumor-promoting mechanism of microglia/brain macrophages is upregulation of membrane type 1 matrix metalloprotease (MT1-MMP), which promotes the degradation of extracellular matrix. MT1-MMP upregulation is induced by soluble factors released by glioma cells activating microglial Toll-like receptor 2 (TLR2). METHODS: Versican identified by proteomics was silenced in glioma cells by short interference RNA and short hairpin RNA approaches and studied in vitro and after injection into mouse brains or organotypic brain slices. RESULTS: The splice variants V0/V1 of the endogenous TLR2 ligand versican are highly expressed in mouse and human glioma tissue. Versican-silenced gliomas induced less MT1-MMP expression in microglia both in vitro and in vivo, which resulted in smaller tumors and longer survival rates as compared with controls. Recombinant versican V1 induced significantly higher levels of MT1-MMP in wild-type microglia compared with untreated and treated TLR2 knockout microglial cells. Using glioma-injected organotypic brain slices, we found that the impact of versican signaling on glioma growth depended on the presence of microglia. Moreover, we found that TLR2 expression is upregulated in glioma-associated microglia but not in astrocytes. Additionally, an established TLR2 neutralizing antibody reduced glioma-induced microglial MT1-MMP expression as well as glioma growth ex vivo. CONCLUSIONS: Our results show that versican released from glioma promotes tumor expansion through glioma-associated microglial/macrophage TLR2 signaling and subsequent expression of MT1-MMP. This signaling cascade might be a novel target for glioma therapies.


Assuntos
Neoplasias Encefálicas/metabolismo , Glioma/metabolismo , Macrófagos/metabolismo , Metaloproteinase 1 da Matriz/metabolismo , Microglia/metabolismo , Receptor 2 Toll-Like/metabolismo , Versicanas/metabolismo , Animais , Linhagem Celular Tumoral , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais , Taxa de Sobrevida , Receptor 2 Toll-Like/genética
16.
Int J Cancer ; 135(11): 2569-78, 2014 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-24752463

RESUMO

The invasiveness of malignant gliomas is one of the major obstacles in glioma therapy and the reason for the poor survival of patients. Glioma cells infiltrate into the brain parenchyma and thereby escape surgical resection. Glioma associated microglia/macrophages support glioma infiltration into the brain parenchyma by increased expression and activation of extracellular matrix degrading proteases such as matrix metalloprotease (MMP) 2, MMP9 and membrane-type 1 MMP. In this work we demonstrate that, MMP9 is predominantly expressed by glioma associated microglia/macrophages in mouse and human glioma tissue but not by the glioma cells. Supernatant from glioma cells induced the expression of MMP9 in cultured microglial cells. Using mice deficient for different Toll-like receptors we identified Toll-like receptor 2/6 as the signaling pathway for the glioma induced upregulation of microglial MMP9. Also in an experimental mouse glioma model, Toll-like receptor 2 deficiency attenuated the upregulation of microglial MMP9. Moreover, glioma supernatant triggered an upregulation of Toll-like receptor 2 expression in microglia. Both, the upregulation of MMP9 and Toll-like receptor 2 were attenuated by the antibiotic minocycline and a p38 mitogen-activated protein kinase antagonist in vitro. Minocycline also extended the survival rate of glioma bearing mice when given to the drinking water. Thus glioma cells change the phenotype of glioma associated microglia/macrophages in a complex fashion using Toll-like receptor 2 as an important signaling pathway and minocycline further proved to be a potential candidate for adjuvant glioma therapy.


Assuntos
Antibacterianos/farmacologia , Neoplasias Encefálicas/metabolismo , Glioma/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Minociclina/farmacologia , Receptor 2 Toll-Like/metabolismo , Animais , Western Blotting , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Modelos Animais de Doenças , Citometria de Fluxo , Imunofluorescência , Glioma/tratamento farmacológico , Glioma/patologia , Humanos , Técnicas Imunoenzimáticas , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/patologia , Metaloproteinase 9 da Matriz/genética , Camundongos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Microglia/metabolismo , Microglia/patologia , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos , Receptor 2 Toll-Like/genética , Células Tumorais Cultivadas
17.
J Neurosci Res ; 92(3): 275-86, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24323769

RESUMO

We previously reported that glioma cells induce the expression of membrane-type 1 metalloproteinase (MT1-MMP or MMP-14) in tumor-associated microglia/macrophages and promote tumor growth, whereas MMP-14 expression in microglia under physiological conditions is very low. Here, we show that the increase in MMP-14 expression is also found in microglia/macrophages associated with neurodegenerative and neuroinflammatory pathologies in mouse models as well as in human biopsies or post-mortem tissue. We found that microglial/macrophage MMP-14 expression was upregulated in Alzheimer's disease tissue, in active lesions of multiple sclerosis, and in tissue from stage II stroke as well as in the corresponding mouse models for the human diseases. In contrast, we observed no upregulation for MMP-14 in microglia/macrophages in the early phase of stroke or in the corresponding mouse model, in human amyotrophic lateral sclerosis (ALS) tissue or in a mouse model of ALS as well as in human cases of acute brain trauma. These data indicate that MMP-14 expression is not a general marker for activated microglia/macrophages but is upregulated in defined stages of neuroinflammatory and neurodegenerative diseases and that there is generally a good match between mouse models and human brain pathologies.


Assuntos
Encéfalo/patologia , Encefalite/patologia , Macrófagos/enzimologia , Metaloproteinase 14 da Matriz/metabolismo , Microglia/enzimologia , Doenças Neurodegenerativas/patologia , Regulação para Cima/fisiologia , Doença de Alzheimer/complicações , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Esclerose Lateral Amiotrófica/complicações , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Animais , Encéfalo/metabolismo , Proteínas de Ligação ao Cálcio , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Encefalite/etiologia , Glioma/complicações , Glioma/patologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas dos Microfilamentos , Doenças Neurodegenerativas/etiologia , Ferimentos Perfurantes/complicações , Ferimentos Perfurantes/patologia
18.
Neuro Oncol ; 15(11): 1457-68, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24014382

RESUMO

BACKGROUND: Glioblastomas are the most aggressive primary brain tumors in humans. Microglia/brain macrophage accumulation in and around the tumor correlates with malignancy and poor clinical prognosis of these tumors. We have previously shown that microglia promote glioma expansion through upregulation of membrane type 1 matrix metalloprotease (MT1-MMP). This upregulation depends on signaling via the Toll-like receptor (TLR) adaptor molecule myeloid differentiation primary response gene 88 (MyD88). METHODS: Using in vitro, ex vivo, and in vivo techniques, we identified TLR2 as the main TLR controlling microglial MT1-MMP expression and promoting microglia-assisted glioma expansion. RESULTS: The implantation of mouse GL261 glioma cells into TLR2 knockout mice resulted in significantly smaller tumors, reduced MT1-MMP expression, and enhanced survival rates compared with wild-type control mice. Tumor expansion studied in organotypic brain slices depended on both parenchymal TLR2 expression and the presence of microglia. Glioma-derived soluble factors and synthetic TLR2 specific ligands induced MT1-MMP expression in microglia from wild-type mice, but no such change in MT1-MMP gene expression was observed in microglia from TLR2 knockout mice. We also found evidence that TLR1 and TLR6 cofunction with TLR2 as heterodimers in regulating MT1-MMP expression in vitro. CONCLUSIONS: Our results thus show that activation of TLR2 along with TLRs 1 and/or 6 converts microglia into a glioma supportive phenotype.


Assuntos
Neoplasias Encefálicas/metabolismo , Encéfalo/metabolismo , Glioblastoma/metabolismo , Ativação de Macrófagos , Metaloproteinase 14 da Matriz/metabolismo , Microglia/metabolismo , Receptor 2 Toll-Like/metabolismo , Animais , Encéfalo/patologia , Feminino , Estimativa de Kaplan-Meier , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Taxa de Sobrevida , Receptor 1 Toll-Like/metabolismo , Receptor 2 Toll-Like/genética , Receptor 6 Toll-Like/metabolismo
19.
Am J Ind Med ; 56(7): 725-32, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23460075

RESUMO

BACKGROUND: Workers employed at the Oak Ridge National Laboratory (ORNL) were potentially exposed to a range of chemical and physical hazards, many of which are poorly characterized. We compared the observed deaths among workers to expectations based upon US mortality rates. METHODS: The cohort included 22,831 workers hired between January 1, 1943 and December 31, 1984. Vital status and cause of death information were ascertained through December 31, 2008. Standardized mortality ratios (SMRs) were computed separately for males and females using US and Tennessee mortality rates; SMRs for men were tabulated separately for monthly-, weekly-, and hourly-paid workers. RESULTS: Hourly-paid males had more deaths due to cancer of the pleura (SMR = 12.09, 95% CI: 4.44, 26.32), cancer of the bladder (SMR = 1.89, 95% CI: 1.26, 2.71), and leukemia (SMR = 1.33, 95% CI: 0.87, 1.93) than expected based on US mortality rates. Female workers also had more deaths than expected from cancer of the bladder (SMR = 2.20, 95% CI: 1.20, 3.69) and leukemia (SMR = 1.64, 95% CI: 1.09, 2.36). The pleural cancer excess has only appeared since the 1980s, approximately 40 years after the start of operations. The bladder cancer excess was larger among workers who also had worked at other Oak Ridge nuclear weapons facilities, while the leukemia excess was among people who had not worked at other DOE facilities. CONCLUSIONS: Occupational hazards including asbestos and ionizing radiation may contribute to these excesses.


Assuntos
Causas de Morte , Indústria Química , Neoplasias/induzido quimicamente , Neoplasias/mortalidade , Doenças Profissionais/mortalidade , Exposição Ocupacional/efeitos adversos , Adulto , Distribuição por Idade , Estudos de Coortes , Feminino , Humanos , Laboratórios , Masculino , Pessoa de Meia-Idade , Neoplasias/patologia , North Carolina , Doenças Profissionais/induzido quimicamente , Estudos Retrospectivos , Medição de Risco , Distribuição por Sexo , Análise de Sobrevida , Local de Trabalho
20.
Genes Chromosomes Cancer ; 52(4): 423-30, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23340989

RESUMO

Suv39h1 mediates heterochromatin formation in pericentric and telomeric regions by trimethylation of lysine 9 of histone 3 (H3K9me3). Yet, its role in the induction of chromosomal instability is poorly understood. We established a leukemia model by retrovirally expressing Myc in wild-type and histone methyltransferase Suv39h1-deficient hematopoietic cells and characterized the resulting leukemias for chromosomal instability. All mice that received cells overexpressing Myc developed myeloid leukemia with a median survival of 44 days posttransplantation. Myc-overexpressing wild-type leukemias demonstrated clones with numerical chromosomal aberrations (5/16). In secondary transplantations of these leukemic cells, structural changes, mostly end-to-end fusions of chromosomes, appeared (10/12). In contrast, leukemic cells overexpressing Myc with reduced or no Suv39h1 expression had a normal karyotype in primary, secondary, and tertiary transplantations (16/16). Myc-transduced Suv39h1-deficient cells showed less critically short telomeres (P < 0.05) compared with Myc-transduced wild-type bone marrow cells. Gene expression analysis showed upregulation of genes involved in the alternative lengthening of telomeres (ALT) mechanism. Thus, we hypothesize that loss of Suv39h1 implies activation of the ALT mechanism, in turn ensuring telomere length and stability. Our data show for the first time that Suv39h1 deficiency may prevent chromosomal instability by more efficient telomere stabilization in hematopoietic bone marrow cells overexpressing Myc.


Assuntos
Instabilidade Cromossômica , Leucemia Mieloide/genética , Metiltransferases/genética , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Repressoras/genética , Animais , Células da Medula Óssea/metabolismo , Transplante de Medula Óssea , Feminino , Perfilação da Expressão Gênica , Regulação Leucêmica da Expressão Gênica , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hibridização in Situ Fluorescente , Leucemia Mieloide/metabolismo , Leucemia Mieloide/patologia , Masculino , Metiltransferases/deficiência , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Repressoras/deficiência , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Cariotipagem Espectral , Telômero/genética , Homeostase do Telômero/genética , Encurtamento do Telômero/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA